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Magnetic properties of Heisenberg clusters 
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Abstract. The effem of finite size on the thermodynamic’properties offemmagnetic clusters 
have been calculated an the basis of a self-consistently solved spin-wave sped” for clusters of 
various sizes. The finite size leads to an effective pawer law for the temperahrre dependence of  
the magnetization (M- Tu: 3/2 < a  c 3). and to a neutron-scattering m s s  d o n  with 
a wavevector broadened discrcte spin-wave spectrum very different h m  that o f  the bulk. 
predictions of the implications of finite size are extended to the size ‘;inge of nanoparticles 
The effects should readily observed in experiments. 

1. Introduction 

The ability to produce metallic clusters consisting of only a few of atoms has opened 
a new field of research in the border region between molecular and traditional solid 
state physics 111. Most theoretical efforts in the physics of clusters have been devoted 
to the investigation of electronic, magnetic, and structural ground-state properties [ M I .  
Recently, the magnetic properties of metallic clusters have received much attention [7- 
131. Experimental findings of temperature, field and size dependencies of the magnetic 
moment of iron and cobalt in clusters [S, 91, have been explained by a theoretical model of 
superparamagnetic relaxation [ll]. However, a number of problems still remain unsolved. 
The thermodynamic properties of clusters, and their change with size, have previously 
been addressed in a number of Monte Carlo model studies of Heisenberg [14,15] and Ising 
[10,16] spin systems of finite size. These studies predict a rounding of the critical behaviour 
and non-uniform magnetization profiles for the clusters. However, the Monte Carlo studies 
did not describe the detailed dynamical behaviour, and no detailed analysis of the low- 
temperature behaviour of the magnetization has been given. The motivation for the present 
study is to clarify these questions. 

Through a self-consistent determination of the eigenstates of the Heisenberg cluster (the 
spin-wave spectrum) the thermodynamic properties of clusters with up to 749 spins are 
calculated. In order to compare with available experimental data of Fe clusters/pmicles the 
calculations are performed for clusters with a BCC structw. We find the temperature 
dependence of the magnetizatlon and its variation with cluster size. The dynamical 
behaviour, and the corresponding neutron-scattering cross section, are predicted. These 
properties are yet to be measured, 

4 Present address: Materials DepamnenI, Ris0 National Laboratory, DK-4000 Roslulde, Denmark. 
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2. Model 

The clusters are built by spherical cut-outs from a Bcc lattice around a central spin. A 
cluster with 27 spins i s  illustrated in figure 1. Atoms with different coordination numbers 
are indicated by the different shades. Figure 1 is further discussed in section 4.1. The 
exchange interaction between nearest-neighbour spins is modelled using the Heisenberg 
Hamiltonian 

(1) 
1 

H = --E J i j S i  . Sj 
2 il 

where Jij is the exchange energy constant and Si and Sj are the spins on sites i and j .  The 
quantum mechanical equation of motion, in a site-dependent random-phase approximation, 
can be written [I71 

(2) 
Mi + M j  + 

si 2 
os+ I = C J , ~ M ~ s ;  - C J~~ 

i 

where S+ = S, + is, and M i  = (Szi) is the thermally averaged mean value of the spin at 
site i. In a translational invariant system, where M i  is the same at all sites, the equation 
of motion can be diagonalized by a Fourier transformation to the reciprocal q-space; the 
eigenstates are plane waves. As translational invariance is lacking for clusters, (2) must be 
solved numerically in real space; the wavevector q is no longer a good quantum number. 
One should, therefore, expect modifications of the bulk dispersion curve, w ( q )  = S(J0 -  Jq ) ,  
where Jq = E, Jv exp(-iq . r) and JO = Jq=o is the exchange energy constant times the 
number of nearest neighbours (the coordination number). 

Figure 1. Illustration of a 27-spin cluster set up by 
a spherical CUI-out in a n c c  lanice. Ihe spins in the 
cluster belong to four shells with different Mardination 
numbers as illusbated by the different shades of the 
spheres. The cones in the lower part illustrate the 
thermal mean ~ a l u t  of the wnes on which the spins 
precess in a classical interpretation of the spin-wave 
states calculaled at 7 = I . O J / k n .  
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Figure 2. The neuwn scattering cross section S(q. o) calculated for 6 along the [lo01 (U) and 
[I101 direction (b) for a BCC cluster contaning 59 spins. The hll curves in khe lower plane are 
the bulk dispersion curves in the same direcuons. 

3. Ground-state properties 

3.1. Neutron-scattering cross section 
A direct diagonalization of (2) for a cluster of N spins gives N discrete eigenvalues ( E p )  
and the corresponding eigenvectors (@) for S+. The neutron-scattering cross section at 
T = O i s [ l 8 ]  

(3) 

where 

In figure 2 S(q, o) is shown at T = 0 for a cluster with 59 spins for @ = q/lql along the 
[I101 and [I001 directions. S(q, o) is strongly modified compared to the bulk behaviour, 
depicted as full curves in the lower plane of the figure. A continuous distribution of q 
values is needed in order to describe the spin-deviation pattern of the discrete eigenstates. 
An energy gap (AE)  between the ground state and the first excited state is seen, and this is 
of particular importance for the low-temperature behaviour of the temperature dependence 
of the magnetization. In figure 2(0) the highest-energy eigenvalue for the cluster clearly lies 
below the bulk value. This is an effect of the smaller coordination number at the surface. On 
the other hand, when spin-waves perpendicular to the most close-packed planes ([ l lo])  are 
considered (figure 2(b)), the highest-energy eigenstates of the cluster are at higher energies 
than for the bulk. The eigenstates of the cluster cannot be characterized by just one q-vector, 
as in the case of the bulk. Each cluster eigenstate is characterized by a large number of q 
vectors, and hence spin-waves in energetically less favourable directions than [ 1 IO] may be 
mixed into the cluster state. This explains why the cluster states, in spite of the reduced 
coordination number in the cluster, can be more energetic than the bulk [ I  IO] states. 
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3.2. The energy gap 

Since the thermodynamic behaviour of clusters at low temperatures is dominated by the 
presence of the energy gap (AE)  in the spin-wave spectrum, it is important to understand 
the cluster-size dependence of A E .  In figure 3 A E  is plotted as a function of reciprocal 
size (11~~); where r, is defined as the radius of a sphere, with bulk density, that contains N 
spins. The variation of A E  with size can be understood by considering the largest possible 
wavelength in the clusters. For the smallest clusters the first eigenstate resembles a standing 
wave with 6 perpendicular to the most close-packed planes, i.e. along the [110] direction. 
It has maximum amplitude, antinodes, at the surface and a node in the centre. The half 
wavelength, hj2, thus equals the cluster dimension. As the size of the clusters increases the 
antinodes move inward. For increasing cluster size the eigenstates approach the eigenstates 
of a magnetic field in a continuum sphere (due to the similarity of the equation of motions). 
The first eigenstate of a magnetic field in a sphere has a node in the centre and antinodes 
positioned within the sphere [19]. Now, let us assume that A E  is proportional to the square 
of the wave number, A E  = JSa2q2, as for the bulk (a is the lattice constant). We further 
assume that the maximum half-wavelength, h(rc)/2 = x/qc, varies from being equal to 
the diameter ( d )  for the smallest cluster (d = 2rc = 2ro), to being a constant fraction, e, 
of the diameter for large clusters (d = 2rc >> 2ro). as is the case for the electromagnetic 
eigenstates for a continuum sphere. One then arrives at an expression for AE as a function 
of cluster size: 
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Figure 3. The energy gap, AE(r,), between’the ground 
state and the fim exited state in the spin-wave spectrum as 
a function of reciprocal size, l/rv The full c w e  is the 
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r0-1 (a-’) theoretical c w e  based on (5). 

Figure 3 shows AE(r,) for clusters of various size compared with (5) (for 8 = 0.71). 
This simple picture accounts very well for the variation of AE with size. Therefore, (5) 
allows a prediction of A E  for cluster sizes beyond the largest (N = 749) studied in this 
work. Assuming the exchange energy constant ( J )  to be equal to 11.6 meV [20] as for bulk 
iron, the energy gap of a 725 cluster corresponds to a temperature AEjkB of about 30K 
(see figure 3). 
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4. Thermodynamic properties 

4.1. Magnetization profile : 

To evaluate the temperature dependence of the magnetization the eigenvalues of (2) must 
be evaluated, and weighted using the proper statistical weighting pose  statistics). As the 
coefficients in (2) depend on Mi the problem must be solved self-consistenfly. Due to the 
lack of neighbours at the surface, the spin deviations are expected to be larger in the outer 
shells than at the centre. Therefore, the thermally averaged spin projections, Mi, must be 
allowed to vary with position, as well as with temperature. The problem is solved self- 
consistently in the following way. The eigenvalues ( E p )  and eigenvectors (@:) are found 
by diagonalizing (2). starting from an initial assumption of the Mi profile.' The 'thermal 
mean value of the spin projection on the zaxis, Mi, is then found by adding the statistically 
weighted spin deviations of all eigenstates ( p )  [21]: 

(6) 

The diagonalization of (2) is then repeated with the new values of MI, leading to new 
eigenvalues, which, after the statistical weighting of (6), lead to a new determination of 
the profile of M,. The procedure is repeated until the mean value Mmem = E, M J N  
converges. The convergence test is double-sided such that the final M,, is independent 
of whether the starting guess is smaller or larger than the accepted solution. 

0.0 0.5 1 . 0 '  ' 1 . 5  

Figure 4. The figure shows the mean magnetization 
( s q w j ,  the magnetmfion at the cenhe (dotted) and the 
magnetization of the surface layer (broken) as a function of 
temperam for clusters containing 27, 137 and 339 sp~ns. 
The full curves are best-fit CUNS using an effecuve power 
law (7). The power law describes the behamour of the large 
clusters very well. Only for the smallest clusfer (N = 27) 
is the expected exponential behaviour evident. Tbe bulk 
behaviour i s  shown at the top of the figure. 

The temperature dependence of the magnetization determined in the above-described 
manner is found to deviate substantially from the behaviour of bulk materials. At high 
temperature the magnetization of the clusters decreases faster with temperature than for 
the bulk, due to excitation of large-amplitude surface modes. At low temperature the 
magnetization decreases slower for the clusters than for the bulk [22], as a consequence of 
the presence of AE in the spin-wave spectrum for clusters. These effects are readily seen 
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in figure 4, where calculated magnetization profiles for different sized clusters are shown. 
The magnetization of the surface layer and of the central spin, as well as M-, are shown 
as a function of temperature. The surface layer is seen to be much softer than the interior 
shells. The magnetization of the central spin, on the other hand, decreases much more 
slowly than the bulk magnetization, indicating that the spin fluctuations are transferred to 
the outer spins in the clusters. As the size of the cluster increases the bulk behaviour (top 
curve) is approached; the curves for the surface and for the centre move closer together, 
and the mean magnetization decays more slowly. These effects are also seen in figure 1. 
In a classical picture the magnitude of S+ signifies the opening angle of the cone on which 
the spin precess [ 171. The cones in the lower part of figure 1 illustrate the thermal averages 
of the opening angles in the classical spin precession movement for the four types of spins 
in the 27-spin cluster at a given temperature. Clearly, as the number of nearest neighbours 
decreases towards the surface of the cluster the average opening angle of the precession 
cones increases corresponding to a larger reduction of the magnetization. 

4.2. Temperature dependence of the mean magnetization 
The energy gap leads to an exponential temperature dependence of the magnetization 
(Mmm a 1 -exp(-AE/keT))  at temperatures (T << A E / ~ B )  low enough for only the first 
excited state to be appreciably populated. However, we find that the temperature dependence 
of the mean magnetization of the clusters over a larger temperature range (from 045% of 
the mean field Curie temperature, 0) is well described by the effective power law 

(7) 
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Mmm(T)/Mo = I - BT*. 

The energy gap ( A E )  and the lacking coordination are the key features of the finite 
size. Their effects on the temperature dependence of the magnetization can be effectively 
described by (7) through enhanced (compared to bulk) values of or and B.  Furthermore, 
the expression is simple, has the right form in the bulk limit, and it is in accordance with 
experimental praxis in the field. Fitiing with the above expression gives very good fits 
except for the smallest clusters for T < 0/Z, where a systematic deviation is observed 
due to the exponential behaviour at low temperatures. This is illustrated in figure 4 where 
the fits (using (7)) to the Mmcan(T) data are drawn as full curves. 

The results of the fitting procedure are summarized in figure 5,  where or and B are 
plotted against l /rc.  Using the known value (or = 3/2) for the infinite system ( I / r c  = 0) a 
straight line can be drawn, which allows a prediction of the effective power-law exponent, 
(I, for cluster sizes beyond those for which the full calculations have been performed. The 
B coefficient varies in a less systematic way with size than (I, but it is, generally, somewhat 
larger than the bulk value. The B parameter depends on the number of nearest neighbours 
in the system, which varies from spin to spin in the cluster. The mean coordination number 
increases with increasing cluster size. The scatter of the points in figure 5 reflects the 
structural variations in the mean coordination number. For example, the clusters with 
N = 27 (r;' = 0.68) and N = 89 (r;' = 0.46) have, for their size, extraordinarily low 
effective coordination numbers (see figure 1). Therefore, the temperature dependence of 
the mean magnetization for these clusters are characterized by relatively large B values. As 
the size of the cluster increases the B parameter approaches the bulk value (broken curve 
in figure 5). 

4 3 .  Experimental situation 
In recent years several studies on the structure and magnetic properties of clusters and 
ultrafine particles [8,9,2&32] have been reported. Free unsupported clusters of iron were 
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Figure 5. Upper halt the sile dependence of the 
effective power-law exponent, a', obrained eom a 
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field Curie temperature (e). The full line is a 
swighr line exmplated to the bulk value. Lower 
halt the size dependence of the parameter B of the 
power-law fits. The broken line is the bulk value. 
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first made by Cox and co-workers [23], who studied the magnetic moment for clusters 
consisting of 2-17 atoms. The clusters investigated by Cox and co-workers 1231 were 
made by pulsed laser evaporation of an iron rod. The magnetic moments of the clusters 
were determined by measuring the deflection of the clusters in a Stem-Gerlach experiment. 
The results indicated that the magnetic moment per atom was at least that of bulk iron. 
This kind of experiment has now also been carried out by other groups. During the past 
two years clusters of iron 181, cobalt [9] and gadolinium [35] have been investigated by 
studying the StemGerlach profiles of the deflected cluster beams. The magnetic moment of 
the cluster will perform superparamagnetic relaxation 111,361. When analysing the results 
of the deflection experiments [8,9] on this basis the magnetic moments of the iron and 
cobalt atoms are deduced to be IO-50% larger (at T = 0) than the atomic moments found 
in the bulk material 111,361. The cluster beam studies, in conjunction with the model of 
superparamagnetic relaxation, have thus confirmed the theoretical prediction [2,4,37] that 
the magnetic moments of cluster atoms should be at least that of bulk atoms. The results 
indicate that even very small clusters preserve ferromagnetic behaviour. 

Structural studies of unsupported clusters/particles are yet to be performed. However, 
structural investigations of supported clusters have been made. The general conclusion of 
these studies has been, at least for cluster sizes down to about l.Onm, that the structure of 
iron clusters is the same as for bulk iron, i.e. the BCC structure. Clusters of this size contain 
about 50 atoms. 

It is clear f" the available experimental work that the preparation of ultra-small 
particles/clusters is not an easy task. Each preparation technique has its complicating factors 
which have to be taken into account when interpreting the results. The ultra-fine particles 
are typically supported, hence the outermost atoms of the clusters are interacting with 
'foreign' atoms, thereby introducing an extra component to the magnetization profile and to 
the Mossbauer spectrum. These interfacial properties are often difficult to separate from the 
intrinsic properties of the clusters and, moreover, the properties of the interface will also 
influence the properties of the interior of the clusters. 

~ 

~ 
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aBulk 
* Surfoce/lnterfoce . Figure 6. Experimenlal data of Herr 

and w-workers 1261 for the temper- 
ature dependence of the hyperfine 
fields of atoms in the bulk (triangles) 
and atoms at the surface (circles) of 

0 100 200 300 6nm a-iron panicles. "he hyperfine 
fields have been normalized by the 
maximum value in each wries. T (K) 

However, it seems by now to be well established that the magnetization of the surface 
layers decreases faster, with increasing temperature, than does the magnetization in the 
interior of the particles. Studies of 3 6 n m  iron particles have shown that the Mossbauer 
spectra should be analysed by using at least two sextets [26,30,32]: one sextet with a 
magnetic hyperfine field typical of that for bulk iron, and one sextet with a magnetic 
hyperfine field which is about 5% larger than that of bulk iron (at T = 5 K) [261. The latter 
sextet is ascribed to surface/interface atoms [26]. The 5% enhanced magnetic hyperfine 
field at a surface is in good accordance with theoretical findings [38]. It is a result of 
band narrowing, brought about by the lack of orbital overlap at the surface. At elevated 
temperatures the magnetic hyperhe field (which can be considered to be proportional to 
the magnetization) decreases faster with increasing temperature at the surface than in the 
interior of the particles [26,30,32]. This has been clearly demonstrated in Mossbauer studies 
by Herr and co-workers [26] on approximately 6nm large iron particles produced by an 
inert-gas condensation technique. Their results are reproduced in figure 6. The observation 
of the presence of a non-uniform magnetization profile, with the magnetization decreasing 
towards the surface, is in accordance with the presented model calculations, as well as with 
previous Monte Carlo simulations [14,15]. Experiments on thin iron films have, similarly, 
revealed a more rapid decrease of the magnetization at the surface than in the bulk, as the 
temperature is increased [39,40]. 

5. Discussion 

From the previous section it is clear that, as yet, no firm conclusion on the effects of 
finite size on the temperature dependence of the magnetization of clusters/ultrafine particles 
has been reached experimentally. To address the most important effects of finite size 
in the statistical properties we have made a number of simplifying assumptions in the 
present theoretical treatment The clusters were assumed to have a simple BCC structure, 
the magnetic moments (at T = 0) to be the same at all sites, and the strength of the 
exchange interaction the same among all neighbouring spins. Whereas the assumption on 
the structure seems justified on the basis of experimental results, the two latter assumptions 
may not be fulfilled in real clusters, as indicated in the above discussion of the Mossbauer 
studies of small iron particles. Structural relaxations may occur close to the surface, which 
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will then influence the atomic moments (gpBS) and the exchange energy constants (4,). 
Such local variations (electronic finite-size effects) will affect the magnetic properties of 
the clusters. Such electronic finitesize effects should show up in experimental studies in 
addition to the statistical effects deduced from our model calculations. The calculations have 
been extrapolated to the size regime of nanoscale particles, where effects due to structural 
and electronic changes near the surface of the p d c l e s  will be of less importance for the 
mean magnetic properties of the particles. 

Although experimental studies of the magnetic and structural properties of clusters 
and ultra-small particles of iron, fabricated by several different preparation techniques, 
have grown considerably in number in recent years, the rather simple and straightforward 
experiments that would yield the best tests of the model calculations presented in this paper 
are yet to be performed, e.g. precise measurements of the mean magnetization as a function 
of temperature. In order to reduce the problems due to interactions of surface spins with a 
support, one suggestion for an experimental study that would be valuable for a comparison 
with our spin-wave calculations, is to collect iron clusters, e.g. size-selected clusters from a 
cluster beam, in a matrix of a condensed inert gas-quite similar to the procedure employed 
by Montan0 and co-workers [29] in their XAFS studies of iron monomers and dimers. The 
finite-size modifications of the neutron-scattering cmss section and the substantial energy gap 
between the ground state and the first excited state should also be accessible to experimental 
studies. 

6. Summary 

We have elucidated the effects of finite size on the dynamics and thermodynamic magnetic 
properties of clusters. We have chosen a simple model for the exchange interaction to 
address, especially the statistical properties. 

We have found large effects of the finite size on the magnetic properties of clusters. 
The neutron-scattering cross section is strongly modified compared to the bulk. The 
eigenstates are wavevector broadened and there is an overall softening of the states due 
to the importance of the surface. The energy gap between the ground state and the first 
excited state can be quite substantial, and a simple model accounting for its variation with 
size is suggested. The magnetization in the clusters is found to be non-uniform decreasing 
towards the surface of the clusters, andthe overall behaviour (the temperature dependence of 
the mean magnetization) is found to be well described by a power law with a size-dependent 
exponent larger than the bulk value ( I S ) .  

The results allow theoretical predictions of as yet unmeasured experimental quantities, 
such as the neutron-scattering cross section, the energy gap in the spin-wave spectrum, 
and the effective power law for the temperature dependence of the magnetization. The 
predictions are extrapolated to the size-regime of nanoscale particles. 

~ 
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